An Improved Grid-Based Approximation Algorithm for POMDPs
نویسندگان
چکیده
Although a partially observable Markov decision process (POMDP) provides an appealing model for problems of planning under uncertainty, exact algorithms for POMDPs are intractable. This motivates work on approximation algorithms, and grid-based approximation is a widely-used approach. We describe a novel approach to grid-based approximation that uses a variable-resolution regular grid, and show that it outperforms previous grid-based approaches to approximation.
منابع مشابه
Applying Metric-Trees to Belief-Point POMDPs
Recent developments in grid-based and point-based approximation algorithms for POMDPs have greatly improved the tractability of POMDP planning. These approaches operate on sets of belief points by individually learning a value function for each point. In reality, belief points exist in a highly-structured metric simplex, but current POMDP algorithms do not exploit this property. This paper pres...
متن کاملOptimization of grid independent diesel-based hybrid system for power generation using improved particle swarm optimization algorithm
The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents modeling and optimization of a photovoltaic (PV)/wind/diesel system with batteries storage for electrification to an off-grid remote area located in Rafsanjan, Iran. For this location, different hybrid systems are studied and ...
متن کاملA Heuristic Variable Grid Solution Method for POMDPs
Partially observable Markov decision processes (POMDPs) are an appealing tool for modeling planning problems under uncertainty. They incorporate stochastic action and sensor descriptions and easily capture goal oriented and process oriented tasks. Unfortunately, POMDPs are very difficult to solve. Exact methods cannot handle problems with much more than 10 states, so approximate methods must be...
متن کاملAn 2-Optimal Grid-Based Algorithm for Partially Observable Markov Decision Processes
We present an 2-optimal grid based algorithm for pomdps that is tractable in 2, the discount factor and the maximum absolute value of the cost function, but exponential in the dimension of the state space. To the best of our knowledge, this is the first optimal grid-based algorithm for pomdps: all other optimal algorithms that we know are based on Sondik’s representation of the Value Function. ...
متن کاملUrban Land-Use Allocation By A Cell-based Multi-Objective Optimization Algorithm
Allocating urban land-uses to land-units with regard to different criteria and constraints is considered as a spatial multi-objective problem. Generating various urban land-use layouts with respect to defined objectives for urban land-use allocation can support urban planners in confirming appropriate layouts. Hence, in this research, a multi-objective optimization algorithm based on grid is pr...
متن کامل